
Graphene: A New Protocol for Block
Propagation Using Set Reconciliation

A. Pinar Ozisik† Gavin Andresen George Bissias† Amir Houmansadr† Brian N. Levine†
†College of Information and Computer Sciences, UMass Amherst

1 INTRODUCTION
We propose an efficient method of announcing new blocks
called Graphene. This document summarizes a more de-
tailed description of Graphene that has been published pre-
viously [7] and includes additional experiments.

Graphene blocks are a fraction of the size of related meth-
ods, such as Compact Blocks [3] and Xtreme Thinblocks [9].
For example, in a detailed example below, we show that a
17.5 KB Xtreme Thinblock can be encoded in 10 KB with
Compact Blocks, and encodedin 2.6 KB with Graphene. In
simulations, we find that Graphene encodes information in
about 10% of the space of Compact Blocks. We use a novel
interactive combination of Bloom filters [2] and Invertible
bloom lookup tables (IBLTs) [5], providing an efficient so-
lution to the problem of set reconciliation in Bitcoin’s p2p
network.

Block announcements are validated using the transaction
content comprising the block. However, it is likely that the
majority of peers have already received these transactions,
and they only need to discern them from those in their mem-
pool. In principle, a block announcement needs to include
only the IDs of those transactions. For example, Corallo’s
Compact Block design [3] significantly reduces block size by
including a transaction ID list, though the cost is increased
coordination between peers. Xtreme Thinblocks [9] works
similarly to Compact Blocks but has greater data overhead.
Specifically, if an inv is sent for a block that is not in the
receiver’s mempool, the receiver sends a Bloom filter of her
IDpool along with the request for the missing block. As a re-
sult, Xtreme Thinblocks are larger than Compact Blocks. The
community has discussed in forums the use of IBLTs (with-
out Bloom Filters) for reducing block announcements [1, 8],
but these schemes have not been formally evaluated and are
less efficient than our approach. Our method is novel; we
have proven and demonstrated that it is smaller than all of
these recent works, and still requires 3 messages between
sender and receiver for coordination: an inv, a getdata, and
a response.

PROTOCOL 1: Graphene

1: Sender: Sends inv for a block.
2: Receiver: Requests unknown block; includes count of txns in her

IDpool,m.
3: Sender: Sends Bloom filter S and IBLT I (each created from the

set of n txn IDs in the block) and essential Bitcoin header fields. The
FPR of the filter is f = a

m−n , where a = n/(cτ).
4: Receiver: Creates IBLT I′ from the txn IDs that pass through S.

She decodes the subtraction [4] of the two blocks, I △ I′.

Figure 1: A summary of the Graphene protocol.

2 THE GRAPHENE PROTOCOL
Unlike other approaches, Graphene never sends an explicit
list of transaction IDs. Instead it sends a small Bloom filter
and a very small IBLT. The intuition behind Graphene is as
follows; a summary appears in Figure 1.

The sender creates an IBLT I from the set of transaction
(txn) IDs in the block. To help the receiver create the same
IBLT (or similar), he also creates a Bloom filter S of the
transaction IDs in the block. The receiver uses S to filter out
transaction IDs from her pool of received transaction IDs
(which we call the IDpool) and creates her own IBLT I ′. She
then attempts to use I ′ to decode I, which, if successful, will
yield the transaction IDs comprising the block. The number
of transactions that falsely appear to be in S, and therefore
are wrongly added to I ′, is determined by a parameter con-
trolled by the sender. Using this parameter, he can create I
such that it will decode with very high probability.

In sum, the Bloomfilter from the sender allows the receiver
to determine which transactions from its mempool are in the
block. Other approaches require a much larger Bloom filter
to keep the false positive rate small; in Graphene, the Bloom
Filter FPR is high because the IBLT recovers any mistakes
made. Similarly, if only the IBLT was used, it would be much
larger than our use of the two mechanisms.
A Bloom filter is an array of x bits representing y items.

Initially, the x bits are cleared. Whenever an item is added
to the filter, k bits, selected using k hash functions, in the
bit-array are set. The number of bits required by the filter

1

is x = y
− ln(f)
ln2 (2) , where f is the intended false positive rate

(FPR). For Graphene, we set f = a
m−n , where a is the ex-

pected difference between I and I ′. Since the Bloom filter
contains n entries, and we need to convert to bytes, its size is
− ln(a

m−n)

ln2 (2)
1
8 . It is also the case that a is the primary parameter

of the IBLT size. IBLT I can be decoded by IBLT I ′ with
very high probability if the number of cells in I is d-times
the expected symmetric difference between the list of entries
in I and the list of entries in I ′. In our case, the expected
difference is a, and we set d = 1.5 (see Eppstein et al. [4],
which explores settings of d).

Each cell in an IBLT has a count, a hash value, and a stored
value. (It can also have a key, but we have no need for a key).
For us, the count field is 2 bytes, the hash value is 4 bytes,
and the value is the last 5 bytes of the transaction ID (which
is sufficient to prevent collisions). In sum, the size of the IBLT
with a symmetric difference of a entries is 1.5(2 + 4 + 5)a =
16.5a bytes. Thus the total cost in bytes,T , for the Bloomfilter
and IBLT are given byT (a) = n − ln(f)c +aτ = n

− ln(a
m−µ)

c +aτ ,
where all Bloom filter constants are grouped together as
c = 8 ln2 (2), and we let the overhead on IBLT entries be the
constant τ = 16.5.

To set the Bloom filter as small as possible, we must ensure
that the FPR of the filter is as high as permitted. If we assume
that all inv messages are sent ahead of a block, we know
that the receiver already has all of the transactions in the
block in her IDpool (they need not be in her mempool). Thus,
µ = n; i.e., we allow for a ofm − n transactions to become
false positives, since all transactions in the block are already
guaranteed to pass through the filter. It follows that

T (a) = n
− ln(a

m−n)

c
+ aτ . (1)

Taking the derivative with respect to a, Eq. 1 is minimized
when when a = n/(cτ).

Actual implementations of Bloom filters and IBLTs involve
several (non-continuous) ceiling functions such that we can
re-write:

T (a) = *
,
⌈ln(

m − n

a
)⌉

n ln(m−na)

⌈ln(m−na)⌉ ln2 (2)

+
-

1
8
+ ⌈a⌉τ . (2)

The optimal value of Eq. 2 can be found with a simple brute
force loop. In practice, a for-loop brute-force search for the
lowest value of a is almost no cost to perform, and we do so
in our simulations.
Due to the randomized nature of an IBLT, there is a very

small but non-zero chance that it will fail to decode. In that
case, the sender resends the IBLT with double the number
of cells (which is still very small). In our simulations, which
encoded real IBLTs and Bloom filters, this doubling was
sufficient for the incredibly few IBLTs that failed.

●●●
●

●

●

●●

●●

0 10000 20000 30000 40000

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

txns

Original Block Size (MB)

R
es

ul
tin

g
B

lo
ck

 (
K

B
) R

esulting B
lock (K

B
)

●● Compact Blocks

Mempool=0

Mempool=100

Mempool=1000

Mempool=10000

Mempool=100000

Figure 2: A comparison of Graphene and Compact blocks.
Mempools are expressed in number of transactions (not
bytes) above and beyond the block itself.

2.1 Comparison to Other Approaches
We have shown previously that Graphene is strictly more
efficient than Compact Blocks through analysis [7]. For il-
lustrative purposes, here is an example.

A receiver with an IDpool ofm = 4000 transactions makes
a request for a new block that has n = 2000 transactions.
The value of a that minimizes the cost is a = n/(cτ) = 31.5.
The sender creates a Bloom filter S with false positive rate
f = a

m−n = 31.5/2000 = 0.01577, with total size of 2000 ×
−ln (0.01577)

c = 2.1 KB. The sender also creates an IBLT with a
cells, totaling 16.5a = 521B. In sum, a total of 2160B+521B =
2.6 KB bytes are sent over the network. The receiver creates
an IBLT of the same size, and using the technique introduced
in Eppstein et al. [4], the receiver subtracts one IBLT from
the other before decoding. In comparison, for a block of n
transactions, Compact Blocks costs 2000 × 5B = 10 KB, over
3 times the cost of Graphene.

We also note that Xtreme Thinblocks [9] are strictly larger
than Compact Blocks since they contain all IDs and a Bloom
filter, and therefore Graphene performs strictly better than
Xtreme Thinblocks as well.

Simulations. Figure 2 shows the results of a simulation of
Compact Blocks and Graphene. The simulation is comprised
of many trials. Each trial takes as input a block size (in terms
of transactions) and the mempool size above and beyond the
transactions in the block. Each protocol is executed and the
number of bytes required is recorded. Because Bloom filters
and IBLTs are probabilistic mechanisms, the simulation uses
the real data structures to ensure the results are accurate.
Each point on the plot is the mean of hundreds of simulations
at that point. Error bars are too small to be shown.

2

As the figure shows, Graphene is consistently 1/10 of the
cost of Compact block or less, depending on the mempool
size. Graphene’s size is dependent on the mempool size, but
the growth is extremely slow.

2.2 Ordered blocks
Graphene does not specify an order for transactions in the
blocks, and instead assumes that transactions are sorted by
ID. Bitcoin requires transactions depending on another trans-
action in the same block to appear later, but a canonical order-
ing is easy to specify. If a miner would like to order transac-
tions with some proprietary method (e.g., [6]), that ordering
would be sent alongside the IBLT. For a block of n items, in
the worst case, the list will be n log2 (n) bits long. Even with
this extra data, our approach is much more efficient than
Compact Blocks. In terms of the example above, if Graphene
was to impose an ordering, the additional cost for n = 2000
transactions would be n log2 (n) bits = 2000 × loд2 (2000) bits
= 2.74 KB. This increases the cost of Graphene to 5.34 KB,
still almost half of Compact Blocks.

REFERENCES
[1] Gavin Andresen. O(1) Block Propagation. https://gist.github.com/

gavinandresen/e20c3b5a1d4b97f79ac2, August 2014.
[2] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allow-

able Errors. Commun. ACM, 13(7):422–426, July 1970.
[3] Matt Corallo. Bip152: Compact block relay. https://github.com/bitcoin/

bips/blob/master/bip-0152.mediawiki, April 2016.
[4] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Vargh-

ese. What’s the Difference?: Efficient Set Reconciliation Without Prior
Context. In ACM SIGCOMM, 2011.

[5] M.T. Goodrich and M. Mitzenmacher. Invertible bloom lookup tables.
In Conf. on Comm., Control, and Computing, pages 792–799, Sept 2011.

[6] Timo Hanke. A Speedup for Bitcoin Mining. http://arxiv.org/pdf/1604.
00575.pdf (Rev. 5), March 31 2016.

[7] A. Pinar Ozisik, Gavin Andresen, George Bissias, Amir Houmansadr,
and Brian Neil Levine. Graphene: A New Protocol for Block Propa-
gation Using Set Reconciliation. In Proc. of International Workshop
on Cryptocurrencies and Blockchain Technology (ESORICS Workshop),
September 2017.

[8] Rusty Russel. Playing with invertible bloom lookup tables and
bitcoin transactions. http://rustyrussell.github.io/pettycoin/2014/
11/05/Playing-with-invertible-bloom-lookup-tables-and-bitcoin-
transactions.html, Nov 2014.

[9] Peter Tschipper. BUIP010 Xtreme Thinblocks. https://bitco.in/forum/
threads/buip010-passed-xtreme-thinblocks.774/, Jan 2016.

3

https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
http://arxiv.org/pdf/1604.00575.pdf
http://arxiv.org/pdf/1604.00575.pdf
http://rustyrussell.github.io/pettycoin/2014/11/05/Playing-with-invertible-bloom-lookup-tables-and-bitcoin-transactions.html
http://rustyrussell.github.io/pettycoin/2014/11/05/Playing-with-invertible-bloom-lookup-tables-and-bitcoin-transactions.html
http://rustyrussell.github.io/pettycoin/2014/11/05/Playing-with-invertible-bloom-lookup-tables-and-bitcoin-transactions.html
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/

	1 Introduction
	2 The Graphene Protocol
	2.1 Comparison to Other Approaches
	2.2 Ordered blocks

	References

