

Security Analysis of Safe & Seldonian Reinforcement Learning Algorithms

AUTONOMOUS LEARNING LABORATORY

A. Pinar Ozisik¹ and Philip S. Thomas¹ University of Massachusetts¹

Problem Statement

- RL is proposed for high-risk applications, such as improving type 1 diabetes and sepsis treatments
- Safe and/or Seldonian RL provides high-confidence guarantees that the application will not cause undesirable behavior
- **Limitation:** Assumes that training data is free from anomalies such as errors, missing entries, and malicious attacks
- How robust are these algorithms to perturbations in data?

Background

- Goal: Find a policy with larger performance than deployed policy π_b
- Assumption: Can collect data from policy π_h , but not from others
- Algorithm guarantees safety:

$$\Pr(J(a(D)) \ge J(\pi_b)) \ge 1 - \delta$$

Problem Formulation

- Robustness to perturbations is analyzed by robustness to adversarial attacks
- Algorithms robust to adversarial attacks will also be robust to non-adversarial anomalies in data
- Attacker model: Attacker adds fabricated trajectories to dataset

Panacea: A New Algorithm

- Named after the Greek goddess of universal health
- Provides α -security, with a user-specified α , if the number of corrupt trajectories in D is upper bounded
 - Takes as input number of corrupt trajectories
- Caps the importance weights using some clipping weight, \boldsymbol{c}

α -security: A New Measure

- A measure that ensures safety even if data is corrupted by an adversary
- Larger α implies greater susceptibility to adversarial attacks
- Assumption 1 (Inferior π_{ρ}).

$$J(\pi_e) < J(\pi_b)$$

Assumption 2 (Absolute continuity).

$$\left(\pi_b(s,a) = 0\right) \implies \left(\pi_e(s,a) = 0\right)$$

• Assumption 3 (φ safety). Given Assumption 1,

$$\Pr(\varphi(\pi_e, D, J(\pi_b)) = \text{True}) < \delta$$

• Under Assumptions 1, 2, and 3, a safety test, φ , is secure with constant α for π_e , π_b , k and D collected from π_b , where |D|=n, if and only if,

$$\forall m \in \mathcal{M}, \Pr\left(\varphi\left(\pi_e, m(D, k), J(\pi_b) + \alpha\right) = \text{True}\right) < \delta,$$

where m is an attack function and \mathcal{M} is the set of all attack functions

- α is computed based on **best attacker strategy**
 - Causes maximum artificial increase in $1-\delta$ confidence lower bound on $J(\pi_{\scriptscriptstyle \rho})$

Empirical Evaluation on Grid-world & Type 1 Diabetes Treatment

Number of adversarial trajectories added to dataset of size 1,500

- Evaluated two safety tests
 - Chernoff-Hoeffding (CH) & IS
 - CH & weighted importance sampling (WIS)
- Randomly picked π_b and π_e
- Point where blue line crosses the black-dotted line represents the number of trajectories needed to break existing safety tests
- It takes 49 trajectories for IS and 1 trajectory for WIS for both domains
- Point where red line crosses the black-dotted line represents the number of trajectories needed to break Panacea
 - IS with $\alpha = 0.5$: 59 trajectories in grid-world and 68 trajectories in diabetes domain
 - WIS with $\alpha=0.5$: does not cross black-dotted line in grid-world and 65 trajectories in diabetes domain
- Conclusion: Safety tests can be extremely fragile, but Panacea provides user-specified robustness