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Problem Statement Problem Formulation a-security: A New Measure

 Robustness to perturbations is analyzed by * A measure that ensures safety even if data is corrupted by an
robustness to adversarial attacks adversary

* Algorithms robust to adversarial attacks will also be . Larger a implies greater susceptibility to adversarial attacks
robust to non-adversarial anomalies in data

 RL is proposed for high-risk applications, such as improving type 1
diabetes and sepsis treatments

« Safe and/or Seldonian RL provides high-confidence guarantees that

the application will not cause undesirable behavior
PP « Assumption 1 (Inferior x,).

« Attacker model: Attacker adds fabricated
trajectories to dataset J (”e) <J (ﬂb)
* Assumption 2 (Absolute continuity).

(my(s,0) =0) = (m,(s,a) = 0)
Panacea: A New Algorlthm - Assumption 3 (¢ safety). Given Assumption 1,
Pr(¢(x,, D, J(x;,)) = True) < 0

« Under Assumptions 1, 2, and 3, a safety test, ¢, is secure with

constant « for z,, 7, k and D collected from m,, where | D | = n, if
and only if,

Vm e M, Pr <(p(71'e, m(D, k), J(m,) + a) = True) < 0,

where m is an attack function and .Z is the set of all attack functions

« Limitation: Assumes that training data is free from anomalies such
as errors, missing entries, and malicious attacks

« How robust are these alqorithms to perturbations in data?

Background

- Goal: Find a policy with larger performance than deployed policy 7;, * Named after the Greek goddess of universal
health

« Provides a-security, with a user-specified a, if the

number of corrupt trajectories in D is upper
bounded

« Assumption: Can collect data from policy 7, but not from others
« Algorithm guarantees safety:
Pr(J(a(D)) > J(m) > 1 = &

- Takes as input number of corrupt trajectories
nput nu Hptira) | « « Is computed based on best attacker strategy

» Caps the importance weights using some clipping

Candidate weight, ¢
c Selection €

- Causes maximum artificial increase in 1 — 6 confidence lower
bound on J(x,)
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« Conclusion: Safety tests can be extremely fragile, but
Number of adversarial trajectories added to dataset of size 1,500 Panacea provides user-specified robustness



