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To safely deploy systems in real world applications, we must guarantee that they will
behave correctly. This is a difficult problem because these systems often contain some degree
of uncertainty due to the realities of training data that underlie them (e.g., in the case of
artificial intelligence applications), or the use of randomized algorithms for performance gains
(e.g., in the case of blockchain applications for cryptocurrencies). To address this, we must
ensure that we are designing systems that are robust against uncertainty.

The foundation of my research is to analyze the robustness of models to inform and
improve the development of systems with practical, real world applications. To this end,
I have worked on the following questions, which I later refer to, in reinforcement learning
(RL) and blockchain systems: I) how can we ensure robustness, II) how can robustness be
measured, and IIT) what should a system be robust against.

Robustness is an overloaded term with different definitions in statistics, artificial intel-
ligence (AI), and systems. For estimation problems using data, robust statistics aim to
minimize errors due to outliers or minor deviations from distributional assumptions [12].
In AI, robust models are those capable of withstanding uncertainty introduced during data
generation or at any stage in the data processing pipeline. In the context of systems secu-
rity, robustness refers to computer programs that are designed to offer protection against an
attacker model. Inspired by this definition, adversarial machine learning studies learning in
the presence of an adversary. I have already leveraged some tools and methodologies from
these domains, and plan to utilize more in the future.

An important statistical tool I have used in both areas of my research are concentration
inequalities (Cls). Also known as tail inequalities or tail bounds, Cls bound the probability
that a random variable deviates from some value, typically its expectation or median. For
blockchain systems, robustness implies mathematical safety, which requires Cls to ensure that
training data does not include too many outliers, thereby representing the true underlying
distribution of the data (Q-I). For RL, on top of this already existent requirement, I argue
that training data must also be secure, i.e., robust against data points that do not come from
the true underlying distribution. Using this definition, I created a new measure of security to
quantify the susceptibility of training data to corruptions (Q-II). These corruptions represent
the worst possible data points added to training data by an adversary with a specific agenda.
These safety and security requirements arise from domain-specific needs: cryptocurrencies
must be robust against scams and attacks, and inferences made from data must be robust
against anomalies (Q-III).

To summarize, in both areas of my work, robustness has included concepts that are both
generalizable and domain-specific, and has become interchangeable with safety and security.
In the future, I would like to explore how robustness relates to fairness, trustworthiness, and
even interpretability. In doing so, I plan to continue answering the previously mentioned
core questions in other application domains.

1 Robustness in Safe/Seldonian RL

It is crucial to develop robust RL algorithms especially because they have been proposed
for many high-risk applications, such as improving type 1 diabetes and sepsis treatments
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[13, 24]. One type of safe RL algorithm [22, 23], also referred to as safe and/or Seldonian
RL, addresses this problem by ensuring safety, which provides high-confidence guarantees
that the application will not cause undesirable behavior like increasing the frequency of
dangerous patient outcomes. A specific component, called the safety test, can output a new
policy—the mechanism for selecting actions within an agent—using training data collected
from a baseline policy. It uses Cls, most recently the Chernoff-Hoeffding (CH) [11] bound,
to lower bound the performance of the new policy. If this lower bound is higher than the
performance of the baseline policy, the new policy is output. Our analysis of the safety test
answers to what extent the safety guarantee holds when some of the samples in the training
data are not random.

Non-random samples, caused by anomalies, are common when data comes from a pipeline
that includes human interactions, natural language processing, device malfunctions, etc.
For e.g., the recent application of RL to sepsis treatment in the intensive care unit (ICU)
used training data generated from hand-written doctors’ notes [13]. In a high-stress ICU
environment, missing records and poorly written notes are difficult to automatically parse [1].
This can lead to errors in training data with dire consequences in the case of sepsis, which
is a life-threatening medical condition.

Contributions. Our formulation of the problem represents anomalies as samples artificially
created by a malicious attacker. The incorporation of an adversary provides a worst case
analysis to understand the robustness of safety tests to anomalies in data; because any
algorithm robust to an adversary is also robust to non-adversarial anomalies in data. First,
we introduce a new measure of security to quantify the susceptibility of training data to
corruptions. Second, we show that a couple of safe RL methods are extremely sensitive to
even a few data corruptions, completely breaking the probability bounds guaranteed by ClIs.
To fix this problem, we introduce a new algorithm, called Panacea [21]|, which provides a
user-specified level of robustness when the number of non-random samples in the dataset
is upper bounded. We also demonstrate the advantages of using Panacea in practice on a
diabetes treatment simulation.

2 Robust Blockchain Systems

The blockchain [16] concept was originally designed to be the backbone of the Bitcoin
distributed cryptographic currency. Over the last decade, Bitcoin has been adopted more
widely for e-commerce than any previous digital currency. With a market capitalization of
$935 billion [7], Bitcoin’s value has made it a target for malicious attacks. Therefore, just
like any credit or debit card, Bitcoin must be robust against theft and scams.

2.1 Background

To understand specific attacks against Bitcoin, first we briefly describe how blockchains
work. In Bitcoin, transactions (txns), similar to those generated by financial institutions,
are recorded on a public ledger called a blockchain. Txns are broadcast by users on Bitcoin’s
peer-to-peer network. A subset of users, known as miners, independently agglomerate a set
of txns into a candidate block and attempt to solve a predefined cryptographic puzzle as
proof of work. The first miner to solve the problem broadcasts their solution to the network,
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and is able to add the block to the blockchain as a child of the prior block. The miners then
start over, using the newly appended blockchain and the set of remaining txns.

Bitcoin’s cryptographic puzzle consists of the miners’ applying a hash algorithm [10],
which takes as input a block and a random number, called a nonce. If the resulting value,
i.e., the hash, is not less than the known target that is set by the network, then a new nonce
is selected to compute a new hash. This process repeats until some miner finds a solution.
Each time a hash is computed, a miner samples a value from a discrete uniform distribution;
hence, the likelihood of discovering a block increases with a miner’s hash rate or mining
power, i.e., the number of the hashes computed per second. With the published block and
nonce, any miner can verify that the resulting hash is less than the target.

A double-spend attack [16] occurs when a malicious miner, acting as a customer, tries to
steal goods from a merchant by purposely creating a fork on the chain. They release a txn,
x, that transfers money to the merchant and wait for the blockchain, including z, to grow;
but then they attempt to rewrite the chain, excluding x, once they receive the goods. The
malicious miner can succeed only if they have enough mining power: all miners will switch
over to the new chain if it is longer. Hence, the status of txns and blocks is not immutable—a
fork of blocks supported by greater mining power can emerge at any time.

2.2 Estimating Mining Power

The distributed nature of blockchains makes the system partially observable. If each
miner knew the mining power of others, then they could compute the likelihood of a double-
spend attack, and thus, the stability of the current blockchain. Consequently, we seek
to quantify the hash rate of miners in real time, thereby computing the likelihood of the
blockchain’s mutability. In other words, we measure how robust the system is to changes by
estimating the miners’ mining power.

Contributions. We first design a method of accurate hash rate estimation based on compact
status reports [19] issued by miners. These reports require each miner to periodically report
the block and nonce resulting in the minimum hash value since the last block broadcast
on the chain or their last report. Second, we show how hash rates can be estimated from
only blocks that are published to the blockchain. To find a lower and upper bound on the
number of hashes computed per miner, i.e., reduce errors in hash rate estimation, we use a
well-known CI, the Chernoff bound [6], for our first method, and calculate empirical bounds
based on bootstrapping [5, 8] for our second method.

2.3 Minimizing Communication Cost

In addition to double-spend attacks, block propagation delays cause forks on the block-
chain. These delays are mainly due to block size: it takes longer for miners to receive large
blocks, and hence, to discard current work. This causes blocks with the same parent to be
broadcast on the network, causing forks. In order to avoid this situation, we answer the
question of how to quickly relay information, i.e., a block of txns, from a sender to a receiver
if the receiver already possesses all or some of the txns. Similar to our previous project, our
goal is to ensure the robustness—or stability—of the blockchain by minimizing block size.
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Contributions. Our proposed solution, instead of sending all txns directly, uses a novel
combination of two probabilistic data structures: a Bloom filter [4] and an Invertible Bloom
Lookup Table (IBLT) [9]. These data structures use hash functions to compactly represent
a set of items. The widely held assumption that a good hash function appears random [15]
means that these data structures can fail. This failure can occur when a receiver, who obtains
a Bloom filter or IBLT representation of a set, tests whether an item at hand is a part of
the set represented by the data structure. If the membership test for that item returns
negative when it is actually a part of the set, errors occur. This error rate is tunable with a
tradeoff: a smaller error rate means that the data structure becomes bigger. Our protocol,
Graphene [18, 20|, minimizes the total size of both data structures sent between a sender and
receiver given a low error rate. We use Chernoff bounds to set the size of our probabilistic
data structures in order to guarantee Graphene’s performance with high probability.

3 Future Directions

Measuring and increasing robustness against uncertainty in two different systems helped
me develop an understanding of fundamental statistical concepts, which I will utilize in future
projects. Meanwhile, I also plan to apply different mathematical analyses used in other areas
and develop novel methodologies that can be generalizable. The context to pursue these plans
include high-risk applications with potential consequences that are harmful to society.

Addressing real world problems. Three years ago, I created a curriculum for first year
students and taught a course called Ethical Issues in Technology, where we discussed the
ethical ramifications of computing. This course fueled my already existent interest in social
justice, shifting my focus to Al systems with social implications. Recently, there has been
abundant work on identifying bias and discrimination in Al systems, and creating robust
models [2, 3, 17]. Safe RL has also been proposed for creating fair algorithms that reduce
discriminative behavior in intelligent tutoring systems and loan approvals [14]. T plan to
contribute to this line of research by creating robust systems that can tackle such problems.

Expanding application domains. By collaborating with domain experts and working
with data from different application domains such as medicine, self-driving cars and predic-
tive policing, I am interested in developing metrics that evaluate the “quality” or limitations
of training data, which often reflect systemic biases and human error. I believe that domain-
specific phenomena in data will eventually help us develop domain-agnostic methodologies.

Developing/applying mathematical techniques. I plan to explore mathematical tech-
niques to study robustness that include but are not limited to: leveraging tools from robust
statistics and adversarial ML, formulating and analyzing worst or average case scenarios to
mimic the behavior of a given system, and adding random noise to data or input parameters.
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